[Home] [This version is outdated, a new version is here]
*Title...
*Search:...
*Read Me/FAQ/General Info...
*_IBM...
*ACC Micro...
*ALD...
*ALi...
*AMD . . . . . . . [no datasheets, some info]...
*Chips & Technologies...
*Contaq  . . . . . [no datasheets, some info]...
*Efar Microsystems [no datasheets, some info]...
*ETEQ...
*Faraday...
*Forex . . . . . . [List only, no datasheets found]...
*Intel...
**82395SX     Smart Cache                                     12/17/90
***Notes:...
**82396SX     Smart Cache                                     12/17/90...
**82485       Turbo Cache (and 485Turbocache)                      c90...
**82489DX       Advanced Programmable Interrupt Controller    10/12/92...
**82495DX/490DX DX CPU-Cache Chip Set                           <Sep91...
**82495XP/490XP Cache Controller / Cache RAM (for i860)       06/05/91...
**82496/491     Cache Controller / Cache RAM (for P5 Pentium) 03/22/93...
**82497/492   Cache Controller / Cache RAM (for P54 Pentium)    <Nov94...
**82498/493   Cache Controller / Cache RAM (for P54 Pentium)    <Nov94...
**
**Later chipsets (basic spec):
**440 series:...
**450NX  (?)            06/29/98:...
**?????  (Profusion)    c:99...
**800 series
***810         (Whitney)       04/26/99...
***810L        (Whitney)       04/26/99...
***810-DC100   (Whitney)       04/26/99...
***810e        (Whitney)       09/27/99...
***810e2       (Whitney)       01/03/01...
***815         (Solano)        06/19/00...
***815e        (Solano-2)      06/19/00...
***815em       (Solano-?)      10/23/00...
***815ep       (Solano-3)      c:Nov'00...
***815p        (Solano-3)      c:Mar'01...
***815g        (Solano-3)      c:Sep'01...
***815eg       (Solano-3)      c:Sep'01...
***820         (Camino)        11/15/99...
***820e        (Camino-2)      06/05/00...
***830M        (Almador)       07/30/01...
***830MP       (Almador)       07/30/01...
***830MG       (Almador)       07/30/01...
***840         (Carmel)        10/25/99...
***845         (Brookdale)     09/10/01...
***845MP       (Brookdale-M)   03/04/02...
***845MZ       (Brookdale-M)   03/04/02...
***845E        (Brookdale-E)   05/20/02...
***845G        (Brookdale-G)   05/20/02...
***845GL       (Brookdale-GL)  05/20/02...
***845GE       (Brookdale-GE)  10/07/02...
***845PE       (Brookdale-PE)  10/07/02...
***845GV       (Brookdale-GV)  10/07/02...
***848P        (Breeds Hill)   c:Aug'03...
***850         (Tehama)        11/20/00...
***850E        (Tehama-E)      05/06/02...
***852GM       (Montara-GM)    01/14/03...
***852GMV      (Montara-GM)    ???...
***852PM       (Montara-GM)    06/11/03...
***852GME      (Montara-GM)    06/11/03...
***854         (?)             04/11/05...
***855GM       (Montara-GM)    03/12/03...
***855GME      (Montara-GM)    03/12/03...
***855PM       (Odem)          03/12/03...
***860         (Colusa)        05/21/01...
***865G        (Springdale)    05/21/03...
***865PE       (Springdale-PE) 05/21/03...
***865P        (Springdale-P)  05/21/03...
***865GV       (Springdale-GV) c:Sep'03...
***875P        (Canterwood)    04/14/03...
*Headland/G2...
*HMC (Hulon Microelectronics)...
*Logicstar...
*Motorola...
*OPTi...
*PC CHIPS/Amptron/Atrend/ECS/Elpina/etc...
*SIS...
**5571           (Trinity) Pentium PCI/ISA Chipset (75MHz)   <12/09/96
***Info:...
***Configurations:...
***Features:
o   Supports Intel Pentium CPU and other compatible CPU at 
    75/66/60/50MHz (external clock speed)
o   Supports the Pipelined Address Mode of Pentium CPU
o   Supports the Full 64-bit Pentium Processor data Bus
o   Supports 32-bit PCI Interface
o   Integrated Second Level (L2) Cache Controller
    - Write Through and Write Back Cache Modes
    - 8 bits or 7 bits Tag with Direct Mapped Cache Organization
    - Integrated 16K bits Dirty Ram
    - Supports Pipelined Burst SRAM
    - Supports 256 KBytes to 512 MBytes Cache Sizes
    - Cache Read/Write Cycle of 3-1-1-1-1-1-1-1 at 66 MHz
o   Integrated DRAM Controller
    - Supports 3 Banks of FP/EDO SIMMs, or 2 Banks of SDRAM DIMMs
    - Supports 2Mbytes to 384Mbytes of main memory
    - Supports 256K/512K/1M/2M/4M/16M x N FP/EDO/SDRAM DRAM
    - Supports 3V or 5V DRAM.
    - Supports Symmetrical and Asymmetrical DRAM.
    - Supports 32 bits/64 bits mixed mode configuration
    - Supports Concurrent Write Back for FP/EDO DRAM
    - Supports Mixed DRAM (FP/EDO/SDRAM) Technology
    - Supports CAS before RAS Refresh
    - Supports Relocation of System Management Memory
    - Programmable CAS# ,RAS#, RAMW# and MA Driving Current
    - Fully Configurable for the Characteristic of Shadow RAM (640 
      KBytes to 1 MBytes)
    - Supports FP DRAM 5-3-3-3(-3-3-3-3) Burst Read Cycles
    - Supports EDO DRAM 4/5-2-2-2(-2-2-2-2) Burst Read Cycles
    - Supports SDRAM 6/7-1-1-1(-2-1-1-1) Burst Read Cycles
    - Supports X-1-1-1/X-2-2-2/X-3-3-3 Burst Write Cycles
    - Supports 8 Qword Deep Buffer for Read/Write Reordering, Dword 
      Merging and 3/2-1-1-1 Post write Cycles
    - Two Programmable Non-Cacheable Regions
    - Option to Disable Local Memory in Non-Cacheable Regions
    - Shadow RAM in Increments of 16 KBytes
o   Integrated PMU Controller
    - Supports SMM Mode of CPU
    - Supports CPU Stop Clock
    - Supports Break Switch
    - Supports Modem Ring Wakeup
    - Supports Automatic Power Supply Control
o   Provides High Performance PCI Arbiter.
    - Supports 3 internal masters and 5 external  PCI Masters
    - Supports Rotating Priority Mechanism
    - Hidden Arbitration Scheme Minimizes Arbitration Overhead.
    - Supports Concurrency between CPU to Memory and PCI to PCI.
o   Integrated Host-to-PCI Bridge
    - Supports Asynchronous/Synchronous PCI Clock
    - Translates the CPU Cycles into the PCI Bus Cycles
    - Provides CPU-to-PCI Read Assembly and Write Disassembly 
      Mechanism
    - Translates Sequential CPU-to-PCI Memory Write Cycles into PCI 
      Burst Cycles
    - Zero Wait State Burst Cycles
    - Supports 8 DW Deep Buffer for CPU-to-PCI Posted Write Cycles
    - Supports Pipelined Process in CPU-to-PCI Access
    - Supports Advance Snooping for PCI Master Bursting
    - Maximum PCI Burst Transfer from 256 Bytes to 4 Kbytes
    - Fast back-to-back
o   Integrated Posted Write Buffers and Read Prefetch Buffers to 
    Increase System Performance
    - CPU-to-Memory Posted Write Buffer (CTMFF) with 8 QW Deep, Always 
      Sustains 0 Wait Performance on CPU-to-Memory.
    - CPU-to-PCI Posted Write Buffer(CTPFF) with 8 DW Deep
    - PCI-to-Memory Posted Write Buffer(PTHFF) with 8 QW Deep, Always 
      Streams 0 Wait Performance on PCI-to/from-Memory Access
    - PCI-to-Memory Read Prefetch Buffer(CTPFF) with 8 QW Deep
o   Built-in one 32-bit General Purpose Register
o   Integrated PCI-to-ISA Bridge
    - Translates PCI Bus Cycles into ISA Bus Cycles
    - Translates ISA Master or DMA Cycles into PCI Bus Cycles
    - Provides a Dword Post Buffer for PCI to ISA Memory cycles
    - Two 32 bit Prefetch/Post Buffers Enhance the DMA and ISA Master 
      Performance
    - Fully Compliant to PCI 2.1
o   Enhanced DMA Functions
    - 8-, 16- bit DMA Data Transfer
    - ISA compatible, and Fast Type F DMA Cycles
    - Two 8237A Compatible DMA Controllers with Seven Independent 
      Programmable Channels
    - Provides the Readability of the two 8237 Associated Registers
o   Built-in Two 8259A Interrupt Controllers
    - 14 Independently Programmable Channels for Level- or Edge-
      triggered Interrupts
    - Provides the Readability of the two 8259A Associated Registers
o   Three Programmable 16-bit Counters compatible with 8254
    - System Timer Interrupt
    - Generates Refresh Request
    - Speaker Tone Output
    - Provides the Readability of the 8254 Associated Registers
o   Built-in Keyboard Controller
    - Hardwired Logic Provides Instant Response
    - Supports PS/2 Mouse
    - Support Hot Key "Sleep" Function
o   Built-in Real Time Clock(RTC) with 256B CMOS SRAM
o   Fast PCI IDE Master/Slave Controller
    - Fully Compatible with PCI Local Bus Specification V2.1
    - Supports PCI Bus Mastering
    - Plug and Play Compatible
    - Supports Scatter and Gather
    - Supports Dual Mode Operation - Native Mode and 
      Compatibility Mode
    - Supports IDE PIO Timing Mode 0, 1, 2 of ANSI ATA Specification
    - Supports Mode 3 and Mode 4 Timing Proposal on Enhanced IDE 
      Specification
    - Supports Multiword DMA Mode 0, 1, 2
    - Separate IDE Bus
    - Two 8x32-bit FIFO for PCI Burst Read/Write Transfers.
o   Universal Serial Bus Controller
    - Host/Hub Controller
    - Two USB ports
o   On-Board Plug and Play Support
    - One Steerable DMA Channel
    - One Steerable Interrupt
    - One Programmable Chip Select
o   Supports the Reroutibility of the four PCI Interrupts
o   Supports Flash ROM
o   480-Pin BGA Package
o   0.5 μm CMOS Technology

**5581/5582      (Jessie)  Pentium PCI/ISA Chipset (75MHz)   <04/15/97...
**5591/5592/5595 (David)   Pentium PCI A.G.P. Chipset        <01/09/98...
**5596/5513      (Genesis) Pentium PCI Chipset               <03/26/96...
**5597/5598      (Jedi)    Pentium PCI/ISA Chipset           <04/15/97...
**530/5595       (Sinbad) Host, PCI, 3D Graphics & Mem. Ctrl.<11/10/98...
**540            (Spartan) Super7 2D/3D Ultra-AGP Single C.S.<11/30/99...
**55x            SoC (System-on-chip)                        <03/14/02...
**
**Support chips:
**85C206     Integrated Peripheral Controller [no datasheet]         ?...
**5595       Pentium PCI System I/O                          <12/24/97...
**950        LPC I/O                                         <07/16/99...
**Other:...
**PII/III/Pro...
**Athlon etc...
*Symphony...
*TI (Texas Instruments)...
*UMC...
*Unresearched:...
*VIA...
*VLSI...
**VL82C481         System/Cache/ISA bus Controller                 c92
***Basics:...
***Info:

The   VL82C481   controller   is   designed  to   control   486DX   or
486SX/487SX-based ISA bus  systems operating at up to 40  MHz. It also
supports 486 family  CPUs that contain an  integrated write-back cache
(P24T,  etc.)  The VL82C481  replaces  the  following devices  on  the
motherboard:

o  Two 82C37A DMA controllers
o  Two 82C59A interrupt controllers
o  82C54 timer
o  74LS612 memory mapper
o  82284 clock generator and ready interface
o  82288 bus controller

The following controller blocks are also included on-chip:
o  Memory/refresh controller
o  Port B and NMI logic
o  Bus steering logic
o  Turbo Mode control logic
o  Parity checking logic
o  Parity generation logic
o  Writ-back look-aside cache controller

The VL82C481 supports the Weitek 4167 Numeric Coprocessor.

The memory controller logic is capable of accessing up to 64 MB. There
can be up to four banks of 256K, 1M, or 4M DRAMs used in a system. The
VL82C481 can drive two banks without external buffering. Built-in Page
Mode operation and  up to two-way interleaving allows  the PC designer
to maximize  system perform-  ance using low-cost  DRAMs. Programmable
DRAM timing  is provided for  RAS# pre- charge, RAs-to-CAS  delay, and
CAS# pulse width.

The VL82C481  write-back cache  controller logic  supports one  or two
bank direct map write-back cache  with external tag storage. The cache
controller can per- form 2-1-1-1 reads with two banks or 2-2-2-2 reads
with one bank. It can also  perform 3-2-2-2 cycle reads for support of
slower SRAMs at higher frequences.   The VL82C481 can perform one wait
state writes on cache-hits. An optional  zero wait state write mode is
provided  for use  with  fast  cache SRAMs.  The  cachable DRAM  range
includes 2  MB up to 64  MB utilizing cache  data SRAM sizes of  32 KB
through 1 MB, respectively.

The HITM#  input is provided  to force the  VL82C481 to abort  DRAM or
cache cycles when a hit on a dirty line in the CPU write-back cache is
detected. the DRAM or cache  cycle is subsequently restarted after the
CPU has written back the dirty data

Shadowing features are  supported on 16K boundarys  between A0000h and
FFFFFh (640 KB  to 1 MB). simultaneous use of  shadowed ROM and direct
system  board   access  is  possible  in   a  non-overlapping  fashion
throughout  this memory  space. Control  over four  access options  is
provided:
1. Access ROM or slot bus for reads and writes.
2. Access system board DRAM for reads and writes.
3. Access system board DRAM for reads and slot bus for writes.
4. Shadow setup mode. Read ROM of slot bus, write system board DRAM.

Three special programmable address regions  are provided. the Fast Bus
Clock Reg- ion  allows accesses to certain memory regions  at a faster
ISA  bus  clock  rate  for  fast  on-board  or  off-board  devices.  A
Non-Cacheable Region and/or a Write-Pro-  tected Region may be defined
by a set of six registers that allow  memory in the region 640 KB to 1
MB to be marked as  non-cacheable and/or write-protected in increments
of 16 KB. A further set of registers allows a memory range anywhere in
the first 64  MB of memory to be  marked as a DRAM region,  an ISA bus
region, or  a local  bus region, either  cachable or  non-cacheable in
increments of 2 KB. 64 KB, or 1 MB.

Further support for  devices that reside on the local  bus is provided
through use of the LDEV# (Local Bus Access) input, which deselects the
VL82C481 during CPU cycles and  causes the VL82C481 to generate VL-Bus
memory cycles when active dur- ing DMA and Master Mode cycles. Also, a
memory range anywhere  in the first 64 MB of  memory can be programmed
via the internal mapping registers. This allows the VL82C481 to access
a VL-Bus  device during DMA or  Master Mode transfers, and  de- select
the VL82C481 during CPU cycles.

The VL82C481 handles  system board refresh directly  ans also controls
the timing  of slot  bus refresh.  Refresh may  be performed  in three
different modes: synchro- nous, Asynchronous or Decoupled Mode. In the
Synchronous Mode, slot  bus and on- board DRAM  refresh cycles proceed
simultaneously   with  all   memory  cycles   held  until   both  have
completed. The Asynchronous Mode allows  in- and off-board refre- shes
to  be  initiated  simultaneously,  but  to  complete  asynchronously,
allowing earlier  access to  DRAM. In the  Decoupled Mode,  a separate
refresh counter is  used for slot bus refresh,  allowing on-board DRAM
and system refreshes  to proceed in- dependently,  with DRAM refreshes
initiated  during  bus idle  cycles.  CAS-before-RAS  refresh is  also
supported. Refreshes  are staggered  to minimize power  supply loading
and attenuate noise on the VDD and VSS pins. The VL82C481 supports the
ISA bus standard refresh period of 15.625 us as well as 125 us.

The interrupt controller  logic consists of two  82C59A megacells with
eight inter- rupt  request lines each. The two  megacells are cascaded
internally and three of the  interrupt request inputs are connected to
internal circuitry, sa a total  of 13 external interrupt request lines
are  available.  These 13  interrupt  request  lines plus  the  Weitek
interrupt  request   line,  the   ten-channel  check  line,   and  the
Turbo/Non-Turbo  line   are  scanned  in   through  one  pin   on  the
VL82C481. Two external 74LS166s are  required for scanning in these 16
signals.

The  interval timer  includes one  82C54 counter/timer  megacell.  the
counter/timer   has  three  independent  16-bit   counters  and  six
programmable counter modes.

the  two DMA  controllers are  82C37A compatible.  Each controls  data
transfers bet-  ween an I/O channel  and on- or off-board  memory. The
DMA  controllers  can  transfer  data   over  the  full  64  MB  range
available. Internal  latches are  provided for  latc- hing  the middle
address  bits output  by the  82C37A megacells  on the  data bus.  The
74LS612 memory  mappers are integrated  to generate the  upper address
bits.

The  VL82C481  can  be  programmed  for  asynchronous  or  synchronous
operation of the ISA bus.

The  VL82C481 also  performs  all the  data  buffer control  functions
required for a 486-based ISA bus system. Under the control of the CPU,
the  VL82C481 routes  data to  and  from the  CPU's local  D bus,  the
internal XD  bus, and the slots  (SD bus).  During CPU  ISA bus reads,
the  data is  latched for  synchronization  with the  CPU.  Parity  is
checked for D bus DRAM read  operations. On power-on default, the chip
does not  generate parity for  CPU writes  to DRAM, but  does generate
cache write-  back cycles. However,  a mode  is provided in  which the
VL82C481 will  generate parity during  either CPU writes or  VL master
writes. Even parity is generated and checked.

***differences to the VL82C480:...
***Configurations:...
***Features:...
**VL82C486         Single-Chip 486, SC486, Controller                ?...
**VL82C425         486 Cache controller                              ?...
**????????         Cheetah 486, PCI [no datasheet]                   ?...
**VL82C3216        Bus Expanding Controller Cache with write buffer  ?...
**VL82C521/522     Lynx/M                                            ?...
**VL82C530         Eagle Ð                                         c95...
**VL82C541/543     Lynx                                            c95...
**VL82C591/593     SuperCore 590                                   c94...
**VL82C594/596/597 Wildcat                                         c95...
**I/O Chips:
**VL82C106 Combination I/O chip                                      ?...
**VL82C107 SCAMP  Combination I/O chip                               ?...
**VL82C108 TOPCAT Combination I/O chip                               ?...
**VL82C110 Combination I/O chip                                      ?...
**VL82C113 SCAMP  Combination I/O chip                               ?...
**VL82C114 Combination I/O chip                                      ?...
**Video: ...
**Disk:...
**Modems:...
**Other:...
**Not sure if they actually exist...
*Western Digital...
*Winbond...
*ZyMOS...
*General Sources:...

(c) Copyright mR_Slugs Warehouse - All rights Reserved