[Home] [This version is outdated, a new version is here]
*Title...
*Search:...
*Read Me/FAQ/General Info...
*_IBM...
*ACC Micro...
*ALD...
*ALi...
*AMD . . . . . . . [no datasheets, some info]...
*Chips & Technologies...
*Contaq  . . . . . [no datasheets, some info]...
*Efar Microsystems [no datasheets, some info]...
*ETEQ...
*Faraday...
*Forex . . . . . . [List only, no datasheets found]...
*Intel...
**82395DX     High Performance Smart Cache                    06/18/90
***Notes:...
***Info:
The 82395DX High  Performance 82395DX Smart Cache is  a low cost, high
integration, 32-Bit peripheral for  Intel's i386 DX Microprocessor. It
stores a copy of frequently accessed  code or data from main memory to
on chip data RAM that can be accessed in zero wait states. The 82395DX
enables the 386 DX Microprocessor to run at near its full potential by
reducing the average  number of wait states seen by  the CPU to nearly
zero.  The dual  bus architecture allows another bus  master to access
the System Bus while the 386  DX Microprocessor can operate out of the
82395DX's  cache  on  the  Local  Bus.  The  82395DX  has  a  snooping
mechanism which maintains cache coherency during these cycles.

The  8239SDX  is   completely  software  transparent,  protecting  the
integrity  of system software.  High performance,  low cost  and board
space saving  are achieved due to  the high integration  and new write
buffer architecture.

1.0 82395DX FUNCTIONAL OVERVIEW
1.1 Introduction
The  primary function  of  a cache  is  to provide  local storage  for
frequently  accessed memory  locations.  The  cache  intercepts memory
references and handles them  directly without transferring the request
to the System Bus. This results in lower traffic on the System Bus and
decreases  latency   on  the  local  bus.   This   leads  to  improved
performance for a processor on the Local Bus. By providing fast access
to frequently  used code  and data,  the cache is  able to  reduce the
average memory access time of the 386 DX Microprocessor based system.

The 82395DX is a single chip cache subsystem specifically designed for
use  with the  386  DX Microprocessor.   The  82395DX integrates  16KB
cache, the Cache Directory and the Cache Control Logic onto one chip.

The 82395DX is  expandable such that larger cache  sizes are supported
by cascading 82395DXs. In a single 82395DX system, the 82395DX can map
4 Giga  bytes of main memory into  a 16KB cache.  In  the maximum con-
figuration of a  four 82395DX system, the 4 Giga  bytes of main memory
are mapped into  a 64KB cache. The cache is unified  for code and data
and is  transparent to application  software.  The 82395DX  provides a
cache consistency  mechanism which guarantees  that the cache  has the
most recently updated version of the main memory.  Consistency support
has no  performance impact on  the 386 DX Microprocessor.  Section 1.2
covers all the 82395DX features.

The 8239SDX cache architecture is similar to the i486 Microprocessor’s
on-chip cache. The  cache is four Way set  associative with Pseudo LRU
replacement  algorithm.  The  line  size is  16B  and a  full line  is
retrieved from the  memory every cache miss. A  TAG is associated with
every 16B line.

The 82395DX  architecture allows for cache  read hit cycles  to run on
the  Local Bus  even when  the System  Bus is  not  available. 82395DX
incorporates a  new write buffer cache architecture,  which allows the
386 DX Microprocessor to  continue operation without waiting for write
cycles to actually update the main memory.

A  detailed  description of  the  cache  operation  and parameters  is
included in chapter 2.

The 82395DX has an interface  to two electrically isolated busses. The
interface to the 386 DX Microprocessor bus is referred to as the Local
Bus (LB) interface. The interface  to the main memory and other system
devices is referred  to as the 82395DX System  Bus (SB) interface. The
SB interface emulates the 386  DX Microprocessor. The SB interface, as
does the 386 DX Microprocessor, can be pipelined.

in  addition,  it is  enhanced  by an  optional  burst  mode for  Line
Fills.  The  burst  mode   provides  faster  line  fills  by  allowing
consecutive read cycles to  be executed at a rate of up  to one DW per
clock cycle. Several  bus masters (or several 82395DXs)  can share the
same System Bus and the  arbitration is done via the SHOLD/SHLDA/SBREQ
mechanism   (similar   to   the   i486  Microprocessor)   along   with
SFHOLD#. Using  these arbitration mechanisms,  the 82395DX is  able to
support a  multiprocessor system (multi  386 DX Microprocessor/82395DX
systems sharing the same memory).

Cache  consistency   is  maintained  by   the  SAHOLD/SEADS#  snooping
mechanism, similar to the i486  microprocessor. The 82395DX is able to
run a zero  wait state 386 DX Microprocessor  non-pipelined read cycle
it the data exists in the cache. Memory write cycles can run with zero
wait states if the write buffer is not full.

The 82395DX cache  organization provides a higher hit  rate than other
standard  configurations.    The  82395DX,  featuring   the  new  high
performance write buffer cache architecture, provides full concurrency
between  the electrically  isolated Local  Bus and  System  Bus.  This
allows the 82395DX  to service read hit cycles on  the Local Bus while
running  line  fills or  buffered  write  cycles  on the  System  Bus.
Moreover, the  user has the  option to expand  his cache system  up to
64KB.

1.2 Features
1.2.1 82385-LIKE FEATURES
o The 82395DX  maps the  entire physical address  range of the  386 DX
  Microprocessor (4GB) into 16KB, 32KB,  or 64KB cache (with one, two,
  or four 82395DXs respectively).

o Unified code and data cache.

o Cache  attributes are  handled  by hardware.   Thus  the 82395DX  is
  transparent to application software. This preserves the integrity of
  system software and protects the users software investment.

o Double Word, Word and Byte writes, Double Word reads.

o Zero wait states in read hits  and in buffered write cycles. All 386
  DX  Microprocessor  cycles are  non-pipelined.   (Note:  The 386  DX
  Microprocessor must never be pipelined  when used with the 82395DX -
  NA# must  be tied to  Vcc).  

o A hardware cache FLUSH# option.  The 82395DX will invalidate all the
  Tag Valid bits in the Cache  Directory and clear the System Bus line
  butter when  FLUSH# is activated for  a minimum of  four CLK’s.  The
  line buffer is also FLUSH #ed.  

o The 8239SDX supports non-cacheable accesses.  The 82395DX internally
  decodes the 387 DX Math Coprocessor accesses as Local Bus cycles.  

o The system bus interface emulates a 386 DX Microprocessor interface.

o The 82395DX supports pipelined and non-pipelined system interface.

o Provides  cache  consistency (snooping):  The  82395DX monitors  the
  System Bus address  via SEADS# and invalidates the  cache address if
  the System Bus address matches a cached location.

1.2.2 NEW FEATURES

o 16KB on chip cache arranged in four banks, one bank for each way. In
  Read hit  cycles, one DW  is read.  In  a write hit cycle,  any byte
  within the DW  can be written.  In cache fill  cycle, the whole line
  (16B) is written.  This large  line size increases the hit rate over
  smaller line size caches.  

o Cache architecture  similar to  the i486 Microprocessor  cache: Four
  Way SET associative with Pseudo LRU replacement algorithm. Line size
  is 16B  and a  full line  is retrieved from  memory for  every cache
  miss. Tag.  Tag Valid Bit  and Write Protect Bit are associated with
  every Line.  

o New  write  buffer  architecture  with  four DW  deep  write  buffer
  provides zero  wait state memory  write cycles. I/O,  Halt/ Shutdown
  and  LOCK#ed  writes  are  not  buffered.

o Concurrent Line Buffer Cacheing: The  82395DX has a line buffer that
  is used as additional memory.  Before data gets written to the cache
  memory at the completion of a Line Fill it is stored in this buffer.
  Cache hit  cycles to the  line buffer can  occur before the  line is
  written to  the cache.

o Expandable: two  82395DXs support  32KB cache memory,  four 82395DXs
  support 64KB cache memory. This gives the user the option of config-
  uring a system to meet their own performance requirements.  

o In 387 DX Math Coprocessor  accesses, the 82895DX drives the READYO#
  in one  wait state  if the  READYI# was not  driven in  the previous
  clock.
  Note that  the timing of the  82395’5 READYO# generation  for 387 DX
  Math Coprocessor cycles is incompatible with 80287 timing.

o The  82395DX   optionally  decodes  CPU  accesses   to  Weitek  3167
  Floating-Point  Coprocessor address  space  (COOOOOOOH-ClFFFFFFH) as
  Local Bus  cycles. This option  is enabled or disabled  according to
  the LBA# pin value at the falling edge of RESET.

o An enhanced  System Bus interface:  
  a) Burst option  is supported  in  line-fills  similar  to the  i486
     Microprocessor.   SBRDY#  (System  Burst  READY) is  provided  in
     addition to SRDY#. A burst is always a 16 byte cache update which
     is equivalent  to four DW cycles.  The  i486 Microprocessor burst
     order is supported.
  b) System cacheability attribute  is provided (SKEN#). SKEN# is used
     to determine whether the current  cycle is cacheable.  If is used
     to  qualify Line  Fill requests.
  c) SHOLD/SHLDA/SBREQ  system  bus  arbitration  mechanism  is  supp-
     orted.  the same  as in  the  i486 Microprocessor.   A Multi  386
     DX/82395DX  cluster  can  share  the  same System  Bus  via  this
     mechanism.
  d) SNENE# output  (Next Near) is provided to  simplify the interface
     to DRAM controllers.   DRAM page size of 2K  is supported.
  e) Fast  HOLD function (SFHOLD#) is provided.   This function allows
     for multiprocessor support.

  f) Cache invalidation  cycles  supported  via SEADS#.   This  is the
     mechanism used to provide cache coherency.

o Full Local Bus/System Bus concurrency is attained by:
  a) Servicing cache read hit cycles on the Local Bus while completing
     a Line Fill  on the System Bus. The data requested  by the 386 DX
     Microprocessor was provided over the  local bus as the first part
     of the Line Fill.
  b) Servicing cache read hit  cycles on the Local Bus while executing
     buffered write  cycles on the system bus.
  c) Servicing  cache read hit cycles  on the Local  Bus while another
     bus master is running (DMA, other 386 DX Microprocessor, 82395DX,
     i486 Microprocessor, etc...) on the System Bus.
  d) Buffering write  cycles on the Local Bus while  the system bus is
     executing other cycles.

o Write protected areas are supported  by the SWP# input. This enables
  caching of ROM space or shadowed ROM space.

o No Post  Input (NPI#)  provided for disabling  of write  buffers per
  cycle. This option supports memory mapped I/O designs.

o A20M# input provided for emulation of 8086 address wrap-around.

o SRAM test mode. in which the TAGRAM and the cache RAM are treated as
  standard SRAM, is provided. A Tristate Output test mode is also pro-
  vided for  system debugging.  in this mode  the 82395DX  is isolated
  from the other devices in the board by floating all its outputs.

o Single chip, 196 lead PQFP package, 1 micron CHMOS-lV technology.

***Versions:...
***Features:...
**82395SX     Smart Cache                                     12/17/90...
**82396SX     Smart Cache                                     12/17/90...
**82485       Turbo Cache (and 485Turbocache)                      c90...
**82489DX       Advanced Programmable Interrupt Controller    10/12/92...
**82495DX/490DX DX CPU-Cache Chip Set                           <Sep91
***Notes:...
***Info:
The 50 MHz Intel486 DX  CPU-Cache Chip Set provides a high performance
solution  for  servers  and  high-end desktop  systems.   This  binary
compatible solution  has been optimized  to provide 50 MHz,  zero wait
state performance. The CPU-Cache chip set combines the 50 MHz Intel486
Microprocessor with  the 82495DX/82490DX cache  subsystem. It delivers
integer  performance of  41 V1.1  Dhrystone  MlPs and  a SPEC  integer
rating  of  27.9.  The  cache  subsystem  features  the 82495DX  Cache
Controller and the 82490DX Dual  Ported Data RAM.  Dual ported buffers
and registers  of the  82490DX allow the  82495DX Cache  Controller to
concurrently handle CPU bus, memory bus, and internal cache operations
for maximum performance.

The CPU-Cache Chip Set offers  many features that are ideal for multi-
processor  based systems.  The  Write-Back feature  provides efficient
memory  bus utilization  by reducing  bus traffic  through eliminating
unnecessary  writes  to main  memory.   The  CPU-Cache  chip set  also
supports MESI protocol and monitors  the memory bus to guarantee cache
coherency.

The 50  MHz Intel486  DX CPU and  82495DX/82490DX Cache  subsystem are
produced on  Intel's latest CHMOS  V process which  features submicron
technology and triple layer metal.

3.0 ARCHITECTURAL OVERVIEW
3.1 Introduction
The Intel486 CPU-cache chip  set provides a tightly coupled processing
engine  based on  the Intel486  microprocessor and  a  cache subsystem
comprised of  the 82495DX cache controller and  multiple 82490DX cache
components.   Figure 3.1  [see datasheet]  diagrams the  basic config-
uration.

The cache subsystem provides a  gateway between the CPU and the memory
bus. All CPU accesses that  can be serviced locally are transparent to
the memory bus and serve to avoid bus traffic.  As a result, the cache
chip  set  reduces memory  bus  bandwidth  to  both increase  Intel486
processor  performance and  support efficient  multiprocessor systems.
The  cache subsystem also  decouples the  CPU from  the memory  bus to
provide  zero-wait-state  operation at  high  clock frequencies  while
allowing relatively slow and inexpensive memories.

The  CPU-cache chip  set  prevents latency  and bandwidth  bottlenecks
across  a variety  of  uniprocessor and  multiprocessor designs.   The
processor’s  on-chip cache  supports  a  very wide  CPU  data bus  and
high-speed data  movement. The second-level cache  greatly extends the
capabilities of the on-chip cache resources, enabling a larger portion
of memory cycles to be satisfied independently of the memory bus.

3.2 CPU-Cache Chip Set Description
The chip set is comprised of three functional blocks: 

3.2.1 CPU
The chip  set includes a  special version of the  Intel486DX micropro-
cessor at  50 MHz.  The Intel486DX Microprocessor  Data Sheet provides
complete component specifications.

3.2.2 CACHE CONTROLLER
The 82495DX cache controller is  the main control element for the chip
set. providing  tags and line  states. and determining cache  hits and
misses. The 82495DX executes all  CPU bus requests and coordinates all
main memory accesses with the memory bus controller (MBC).

The 82495DX  controls the data  paths of the 82490DX  cache components
for cache hits and misses and furnishes the CPU with needed data.  The
controller  dynamically adds  wait  states as  needed  using the  most
recently used (MRU) prediction algorithm.

The 82495DX also performs memory bus snoop operations in shared memory
systems  and drives  the  cycle address  and  other attributes  during
memory bus accesses. Figure  3.2 [see datasheet] diagrams the 82495DX.

3.2.3 CACHE SRAM

Multiple  82490DX cache  components provide  the cache  SRAM  and data
path. Each component  includes the latches, muxes and  logic needed to
work in lock  step with the 82495DX to efficiently  serve both hit and
miss  accesses.  The 82490DX  components take  full advantage  of VLSI
silicon   flexibility   to  exceed   the   capabilities  of   discrete
implementations.  The  82490DX components support  zero-wait-state hit
accesses  and  concurrent  CPU  and  memory  bus  accesses,  and  they
replicate MRU  bits for autonomous  way prediction. During  memory bus
cycles. the 82490DX components act as a gateway between CPU and memory
buses. Figure 3.3 [see datasheet] diagrams an 82490DX cache component.

3.3 Secondary Cache Features

The 82495DX  cache controller and  82490DX cache components  provide a
unified, software  transparent secondary  data and  instruction cache.
The cache enables  a highspeed processor core  that provides efficient
performance even when paired with a significantly slower memory bus.

The secondary  cache interprets  CPU bus cycles  and can  service most
memory read and  write cycles without accessing main  memory.  I/O and
other special cycles are passed directly to the memory bus.  The cache
has a dual-port  structure that permits concurrent CPU  and memory bus
operation.

The 82495DX  cache controller  contains the 8K  tag entries  and logic
needed to support a cache as  large as 256K. Combinations of between 4
and 9 82490DX cache SRAMs are  used to create caches ranging from 128K
to 256K, with or without data parity.

The  MBC provides  logic  needed  to interface  the  CPU, 82495DX  and
82490DX  to the  memory  bus.   Because the  MBC  also affects  system
performance.  its design can be the basis of product differentiation.

***Configurations:
128K cache without parity:
     82495DX 50Mhz
     + 4x 82490DX

128K cache with parity:
     82495DX 50Mhz
     + 5x 82490DX

256K cache without parity:
     82495DX 50Mhz
     + 8x 82490DX

256K cache with parity:
     82495DX 50Mhz
     + 9x 82490DX

***Features:...
**82495XP/490XP Cache Controller / Cache RAM (for i860)       06/05/91...
**82496/491     Cache Controller / Cache RAM (for P5 Pentium) 03/22/93...
**82497/492   Cache Controller / Cache RAM (for P54 Pentium)    <Nov94...
**82498/493   Cache Controller / Cache RAM (for P54 Pentium)    <Nov94...
**
**Later chipsets (basic spec):
**440 series:...
**450NX  (?)            06/29/98:...
**?????  (Profusion)    c:99...
**800 series...
*Headland/G2...
*HMC (Hulon Microelectronics)...
*Logicstar...
*Motorola...
*OPTi...
*PC CHIPS/Amptron/Atrend/ECS/Elpina/etc...
*SIS...
*Symphony...
*TI (Texas Instruments)...
*UMC...
*Unresearched:...
*VIA...
*VLSI...
*Western Digital...
*Winbond...
*ZyMOS...
*General Sources:...

(c) Copyright mR_Slugs Warehouse - All rights Reserved