[Home] [This version is outdated, a new version is here]
*Title...
*Search:...
*Read Me/FAQ/General Info...
*_IBM...
*ACC Micro...
*ALD...
*ALi...
*AMD . . . . . . . [no datasheets, some info]...
*Chips & Technologies...
*Contaq . . . . . [no datasheets, some info]...
*Efar Microsystems [no datasheets, some info]...
*ETEQ...
*Faraday...
*Forex . . . . . . [List only, no datasheets found]...
*Intel...
**82495DX/490DX DX CPU-Cache Chip Set <Sep91
***Notes:...
***Info:
The 50 MHz Intel486 DX CPU-Cache Chip Set provides a high performance
solution for servers and high-end desktop systems. This binary
compatible solution has been optimized to provide 50 MHz, zero wait
state performance. The CPU-Cache chip set combines the 50 MHz Intel486
Microprocessor with the 82495DX/82490DX cache subsystem. It delivers
integer performance of 41 V1.1 Dhrystone MlPs and a SPEC integer
rating of 27.9. The cache subsystem features the 82495DX Cache
Controller and the 82490DX Dual Ported Data RAM. Dual ported buffers
and registers of the 82490DX allow the 82495DX Cache Controller to
concurrently handle CPU bus, memory bus, and internal cache operations
for maximum performance.
The CPU-Cache Chip Set offers many features that are ideal for multi-
processor based systems. The Write-Back feature provides efficient
memory bus utilization by reducing bus traffic through eliminating
unnecessary writes to main memory. The CPU-Cache chip set also
supports MESI protocol and monitors the memory bus to guarantee cache
coherency.
The 50 MHz Intel486 DX CPU and 82495DX/82490DX Cache subsystem are
produced on Intel's latest CHMOS V process which features submicron
technology and triple layer metal.
3.0 ARCHITECTURAL OVERVIEW
3.1 Introduction
The Intel486 CPU-cache chip set provides a tightly coupled processing
engine based on the Intel486 microprocessor and a cache subsystem
comprised of the 82495DX cache controller and multiple 82490DX cache
components. Figure 3.1 [see datasheet] diagrams the basic config-
uration.
The cache subsystem provides a gateway between the CPU and the memory
bus. All CPU accesses that can be serviced locally are transparent to
the memory bus and serve to avoid bus traffic. As a result, the cache
chip set reduces memory bus bandwidth to both increase Intel486
processor performance and support efficient multiprocessor systems.
The cache subsystem also decouples the CPU from the memory bus to
provide zero-wait-state operation at high clock frequencies while
allowing relatively slow and inexpensive memories.
The CPU-cache chip set prevents latency and bandwidth bottlenecks
across a variety of uniprocessor and multiprocessor designs. The
processor’s on-chip cache supports a very wide CPU data bus and
high-speed data movement. The second-level cache greatly extends the
capabilities of the on-chip cache resources, enabling a larger portion
of memory cycles to be satisfied independently of the memory bus.
3.2 CPU-Cache Chip Set Description
The chip set is comprised of three functional blocks:
3.2.1 CPU
The chip set includes a special version of the Intel486DX micropro-
cessor at 50 MHz. The Intel486DX Microprocessor Data Sheet provides
complete component specifications.
3.2.2 CACHE CONTROLLER
The 82495DX cache controller is the main control element for the chip
set. providing tags and line states. and determining cache hits and
misses. The 82495DX executes all CPU bus requests and coordinates all
main memory accesses with the memory bus controller (MBC).
The 82495DX controls the data paths of the 82490DX cache components
for cache hits and misses and furnishes the CPU with needed data. The
controller dynamically adds wait states as needed using the most
recently used (MRU) prediction algorithm.
The 82495DX also performs memory bus snoop operations in shared memory
systems and drives the cycle address and other attributes during
memory bus accesses. Figure 3.2 [see datasheet] diagrams the 82495DX.
3.2.3 CACHE SRAM
Multiple 82490DX cache components provide the cache SRAM and data
path. Each component includes the latches, muxes and logic needed to
work in lock step with the 82495DX to efficiently serve both hit and
miss accesses. The 82490DX components take full advantage of VLSI
silicon flexibility to exceed the capabilities of discrete
implementations. The 82490DX components support zero-wait-state hit
accesses and concurrent CPU and memory bus accesses, and they
replicate MRU bits for autonomous way prediction. During memory bus
cycles. the 82490DX components act as a gateway between CPU and memory
buses. Figure 3.3 [see datasheet] diagrams an 82490DX cache component.
3.3 Secondary Cache Features
The 82495DX cache controller and 82490DX cache components provide a
unified, software transparent secondary data and instruction cache.
The cache enables a highspeed processor core that provides efficient
performance even when paired with a significantly slower memory bus.
The secondary cache interprets CPU bus cycles and can service most
memory read and write cycles without accessing main memory. I/O and
other special cycles are passed directly to the memory bus. The cache
has a dual-port structure that permits concurrent CPU and memory bus
operation.
The 82495DX cache controller contains the 8K tag entries and logic
needed to support a cache as large as 256K. Combinations of between 4
and 9 82490DX cache SRAMs are used to create caches ranging from 128K
to 256K, with or without data parity.
The MBC provides logic needed to interface the CPU, 82495DX and
82490DX to the memory bus. Because the MBC also affects system
performance. its design can be the basis of product differentiation.
***Configurations:...
***Features:
o 50 MHz Intel486 DX CPU
- RISC Integer Core with Frequent Instructions Executing in One
Clock
- 160 Mbyte/Sec Burst Bus
- 41 Dhrystone MIPs
- 11.5M Double Precision Whetstones/Sec.
- On-Chip Cache and FPU
o Highly Flexible
- Supports 128 Kbyte and 256 Kbyte Configurations
- Complete MESI Protocol Support
- 32- or 64-Bit Memory Bus Width
- Synchronous, Asynchronous, and Strobed Memory Bus Protocols
- Variable Cache Line Sizes and Sectoring
- Cache Data Parity Option
o High Performance Second Level Cache
- Two-Way Set Associative
- Write-Back or Write Through Cache
- Zero Wait State Cache Access
- Concurrent CPU Bus, Memory Bus, and Internal Array Operation
o Full Multiprocessing Support
- Implements MESI Write-Back Cache Protocol
- Low Bus Utilization
- Automatically Maintains 1st Level Cache Consistency
- Supports Read-for-Ownership, Write-Allocation, and Cache-to-
Cache Transfers
**82495XP/490XP Cache Controller / Cache RAM (for i860) 06/05/91
***Notes:...
***Info:...
***Features:...
**82496/491 Cache Controller / Cache RAM (for P5 Pentium) 03/22/93...
**82497/492 Cache Controller / Cache RAM (for P54 Pentium) <Nov94...
**82498/493 Cache Controller / Cache RAM (for P54 Pentium) <Nov94...
**
**Later chipsets (basic spec):
**440 series:...
**450NX (?) 06/29/98:...
**????? (Profusion) c:99...
**800 series...
*Headland/G2...
*HMC (Hulon Microelectronics)...
*Logicstar...
*Motorola...
*OPTi...
*PC CHIPS/Amptron/Atrend/ECS/Elpina/etc...
**Later Chipsets:
Info sourced from the very useful plasma-online.de:
http://www.plasma-online.de/index.html?content=http%3A//www.plasma-online.de/english/identify/picture/pcchips.html
Chipset name | OEM of | used on mainboard
---------------+---------------------------+-----------------------------------------
HX Pro | ALi M1521/M1523 |
SX Pro | SiS 530/5595 | M598
AGP Pro PC-100 | VIA VT82C598AT/VT82C596B | M577
TX AGP Pro | SiS 5591/5595/6326 |
TX Two | ALi M1531/M1543 |
TX Pro | ALi M1531/M1543 | M560, M575
TX Pro II | SiS 5597/5598 | M571
TX Pro III | VIA VT82C580VPX/VT82C586B | M573
TX Pro IV | SiS 5591/5592 | M570
Top Gun | ALi Aladdin IV+ | M565
VIA GRA | VIA VT8501/VT82C596B | M858LMR
VX Pro | VIA VT82C580VP/VT82C586B |
VX Pro + | VIA VT82C580VPX/VT82C586B |
VX Pro II | UTron / HiNT UT801X |
VX two | VIA VT82C580VP/VT82C586B | Amptron PM-8600A
VX two | VIA VT82C580VPX/VT82C586B | Amptron PM-8600B
BXToo | VIA Apollo Pro | M760V, M761V
BXToo | VIA VT82C693/VT82C686A | M767V
BXPro | SiS 600/5595 | M747
BXCel | ALi M1621/M1543 | M726, M729
BXpert | VIA VT82C691/VT82C596 |
BXTel | VIA Apollo Pro | M730
Xcel 2000 | SiS 620/5595 | M741LMRT
Super TX | SiS 5597/5598 | ASUS SP97-V, SP98-N, Jetway J-TX98R2
Super TX | ALi M1531/M1543 |
Super TX | ALi M1541/M1543 | Biostar M5ALA, M5ALC, Pionex MBD-P5ABx
Super TX3 | SiS 5571 |
Super TX4 AGP | |
GFXcel | SiS 630 |
GFXpro | ALi M1631/M1535D |
T-Bird | SiS730S | M810
---------------+---------------------------+----------------------------------------
*SIS...
*Symphony...
*TI (Texas Instruments)...
*UMC...
*Unresearched:...
*VIA...
*VLSI...
*Western Digital...
*Winbond...
*ZyMOS...
*General Sources:...
(c) Copyright mR_Slugs Warehouse - All rights Reserved