[Home] [This version is outdated, a new version is here]
*Title...
*Search:...
*Read Me/FAQ/General Info...
*_IBM...
*ACC Micro...
*ALD...
*ALi...
*AMD . . . . . . . [no datasheets, some info]...
*Chips & Technologies...
*Contaq . . . . . [no datasheets, some info]...
*Efar Microsystems [no datasheets, some info]...
*ETEQ...
*Faraday...
*Forex . . . . . . [List only, no datasheets found]...
*Intel...
**82497/492 Cache Controller / Cache RAM (for P54 Pentium) <Nov94
***Notes:...
***Info:...
***Configurations:...
***Features:...
**82498/493 Cache Controller / Cache RAM (for P54 Pentium) <Nov94...
**
**Later chipsets (basic spec):
**440 series:...
**450NX (?) 06/29/98:...
**????? (Profusion) c:99...
**800 series...
*Headland/G2...
*HMC (Hulon Microelectronics)...
*Logicstar...
*Motorola...
*OPTi...
*PC CHIPS/Amptron/Atrend/ECS/Elpina/etc...
*SIS...
*Symphony...
*TI (Texas Instruments)...
*UMC...
*Unresearched:...
*VIA...
**SL9352 80386DX System and Memory Controller <06/12/90
***Info:
VIA’s System and Memory Controller SL9352, has the logic for the
System Control, Memory Control, Data Control and chip select for some
of the peripherals used in an AT system. The device is fully
configurable via software. No external hardware jumpers are needed to
utilize its features. Default values are provided to boot any system
configuration. On reset, BIOS routines are used to program the device,
transparent to the user, to utilize its special features.
Four configuration registers in the System Control Logic control the
AT bus and peripheral bus operations. Synchronous and asynchronous bus
operations are supported. In synchronous mode, bus clock is derived
from the processor's CLK2. In asynchronous mode, it is derived from an
independent external bus clock pin.
Support for page mode and non-page mode operation with non-interleave
or word /multi-page interleave, along with programmable memory timing,
allow the system designer to get maximum performance for the chosen
DRAMs. High drive for RAS, CAS, memory address, and write lines are
provided to connect SL9352 directly to a large DRAM memory array
without external buffering. In addition, CAS for all the banks in
non-interleave and 2-way interleave are provided to reduce external
gates.
Shadowing features are supported in 16K granularity from 640K to
1M. Remap options allow shadowing of eight different combinations of
tap of memory, Local ROM, and Video ROM to 640K to 1M region.
VlA's System and Memory Controller, SL9352, can be used with two of
VIA's SL9020 Data Controllers, or with discrete latches and
buffers. Data direction and enable signals for the data controller are
provided for both modes of operation.
SL9352 provides decoding for the Real Time Clock and Keyboard
Controller, thus avoiding external decoding gates. In addition, Port B
logic, PS/Z Compatible Port 92 for fast reset, and A20GATE provide the
necessary logic support for a one-chip solution.
***Versions:...
***Features:...
**SLXXXX Other chips...
**
**VT82C470 "Jupiter", Chip Set (w/o cache) 386 [no datasheet] ?
**VT82C475 "Jupiter", Chip Set (w/cache) 386 [no datasheet] ?
**VT82C486/2/3 "GMC chipset" [no datasheet, some info] ?...
**VT82C495/480 "Venus" Chip Set [no datasheet] ?
**VT82C495/491 ? EISA Chip Set [no datasheet, some info] <93...
**VT82C496G Pluto, Green PC 80486 PCI/VL/ISA System <05/30/94...
**VT82C530MV 3.3V Pentium chipset [no datasheet, some info]<05/30/94...
**VT82C570M Apollo Master, Green Pentium/P54C <06/22/95...
**VT82C580VP Apollo VP, Pentium/M1/K5 PCI/ISA System <02/15/96...
**VT82C580VPX Apollo VPX, VPX/97, Pentium with 66/75MHz Bus <01/09/97...
**VT82C590 Apollo VP2, VP2/97, Single-Chip Pentium 66MHz <01/10/97...
**VT82C597/AT Apollo VP3, Single-Chip for Pentium with AGP <10/03/97...
**VT82C598MVP Apollo MVP3,Single-Chip 66/75/83/100MHz & AGP <09/22/97
***Notes:...
***Info:...
***Configurations:...
***Features:
o AGP / PCI / ISA Mobile and Deep Green PC Ready
- Supports 3.3V and sub-3.3V interface to CPU
- Supports separately powered 3.3V (5V tolerant) interface to
system memory, AGP, and PCI bus
- PC-97 compatible using VIA VT82C586B (208-pin PQFP) south bridge
chip with ACPI Power Management for cost-efficient desktop
applications
- Modular power management and clock control for mobile system
applications
- Combine with VIA VT82C596 (Intel PIIX4 pin compatible 324-pin
BGA) "Mobile South" south bridge chip for state-of-the-art
mobile applications
o High Integration
- Single chip implementation for 64-bit Socket-7-CPU, 64-bit
system memory, 32-bit PCI and 32-bit AGP interfaces
- Apollo MVP3 Chipset: VT82C598MVP system controller and
VT82C586B PCI to ISA bridge
- Chipset includes UltraDMA-33 EIDE, USB, and Keyboard / PS2-Mouse
Interfaces plus RTC / CMOS on chip
o High Performance CPU Interface
- Supports all Socket-7 processors including 64-bit Intel Pentium/
Pentium with MMX, AMD 6k86 (K6), Cyrix/IBM 6x86 / 6x86MX, and
IDT/Centaur C6 CPUs
- 66 / 75 / 83 / 100 MHz CPU external bus speed (internal 300MHz
and above)
- Built-in deskew DLL (Delay Lock Loop) circuitry for optimal skew
control within and between clocking regions
- Cyrix/IBM 6x86 linear burst support
- AMD 6k86 write allocation support
- System management interrupt, memory remap and STPCLK mechanism
o Advanced Cache Controller
- Direct map write back or write through secondary cache
- Pipelined burst synchronous SRAM (PBSRAM) cache support
- Flexible cache size: 0K / 256K / 512K / 1M / 2MB
- 32 byte line size to match the primary cache
- Integrated 8-bit tag comparator
- 3-1-1-1-1-1-1-1 back to back read timing for PBSRAM access up to
100 MHz
- Tag timing optimized (less than 4ns setup time) to allow
external tag SRAM implementation for most flexible cache
organization
- Sustained 3 cycle write access for PBSRAM access or CPU to
DRAM & PCI bus post write buffers up to 100 MHz
- Supports CPU single read cycle L2 allocation
- System and video BIOS cacheable and write-protect
- Programmable cacheable region
o Full Featured Accelerated Graphics Port (AGP) Controller
- Synchronous and pseudo-synchronous with the host CPU bus with
optimal skew control
PCI AGP CPU DRAM Mode
33MHz 66MHz 100MHz 100MHz 3x synchronous *1
33MHz 66MHz 83MHz 83MHz 2.5x pseudo-synchronous *1
30MHz 60MHz 75MHz 75MHz 2.5x pseudo-synchronous *1
33MHz 66MHz 66MHz 66MHz 2x synchronous *1
33MHz 66MHz 100MHz 66MHz 3x synchronous *2
33MHz 66MHz 83MHz 66MHz 2.5x pseudo-synchronous *2
30MHz 60MHz 75MHz 66MHz 2.5x pseudo-synchronous *2
33MHz 66MHz 66MHz 66MHz 2x synchronous *2
*1 DRAM uses CPU clock, *2 DRAM uses AGP clock
- AGP v2.0 compliant (1x and 2x transfer modes)
- Supports SideBand Addressing (SBA) mode (non-multiplexed
address/data)
- Supports 133MHz 2X mode for AD and SBA signalling
- Pipelined split-transaction long-burst transfers up to 533 MB/
sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (128 bytes)
- Sixteen level (quadwords) write data FIFO (64 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
- One level TLB structure
- Sixteen entry fully associative page table
- LRU replacement scheme
- Independent GART lookup control for host / AGP / PCI master
accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / NT5 miniport
driver support
o Concurrent PCI Bus Controller
- PCI buses are synchronous / pseudo-synchronous to host CPU bus
- 33 MHz operation on the primary PCI bus
- 66 MHz PCI operation on the AGP bus
- PCI-to-PCI bridge configuration on the 66MHz PCI bus
- Supports up to five PCI masters
- Peer concurrency
- Concurrent multiple PCI master transactions; i.e., allow PCI
masters from both PCI buses active at the same time
- Zero wait state PCI master and slave burst transfer rate
- PCI to system memory data streaming up to 132Mbyte/sec
- PCI master snoop ahead and snoop filtering
- Six levels (double-words) of CPU to PCI posted write buffers
- Byte merging in the write buffers to reduce the number of PCI
cycles and to create further PCI bursting possibilities
- Enhanced PCI command optimization (MRL, MRM, MWI, etc.)
- Forty-eight levels (double-words) of post write buffers from PCI
masters to DRAM
- Sixteen levels (double-words) of prefetch buffers from DRAM for
access by PCI masters
- Supports L1/L2 write-back forward to PCI master read to minimize
PCI read latency
- Supports L1/L2 write-back merged with PCI master post-write to
minimize DRAM utilization
- Delay transaction from PCI master reading DRAM
- Read caching for PCI master reading DRAM
- Transaction timer for fair arbitration between PCI masters
(granularity of two PCI clocks)
- Symmetric arbitration between Host/PCI bus for optimized system
performance
- Complete steerable PCI interrupts
- PCI-2.1 compliant, 32 bit 3.3V PCI interface with 5V tolerant
inputs
o Advanced High-Performance DRAM Controller
- DRAM interface synchronous with host CPU (66/75/83/100 MHz) or
AGP (66MHz) for most flexible configuration
- Concurrent CPU and AGP access
- FP, EDO, and SDRAM
- 66MHz and 100MHz (PC100) SDRAM support
- Different DRAM types may be used in mixed combinations
- Different DRAM timing for each bank
- Dynamic Clock Enable (CKE) control for SDRAM power reduction in
mobile and desktop systems
- Mixed 1M / 2M / 4M / 8M / 16MxN DRAMs
- 6 banks up to 768MB DRAMs
- Flexible row and column addresses
- 64-bit data width only
- 3.3V DRAM interface with 5V-tolerant inputs
- Programmable I/O drive capability for MA, command, and MD signals
- Optional bank-by-bank ECC (single-bit error correction and
multi-bit error detection) or EC (error checking only) for DRAM
integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 8-bank interleave (i.e., 8 pages open simultan-
eously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization
(e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU/cache to DRAM write
buffers
- Four quadwords of CPU/cache to DRAM read prefetch buffers
- Concurrent DRAM writeback
- Read around write capability for non-stalled CPU read
- Burst read and write operation
- 5-2-2-2-2-2-2-2 back-to-back accesses for EDO DRAM
- 6-1-1-1-2-1-1-1 back-to-back accesses for SDRAM
- BIOS shadow at 16KB increment
- Decoupled and burst DRAM refresh with staggered RAS timing
- Programmable refresh rate and refresh on populated banks only
- CAS before RAS or self refresh
o Mobile System Support
- Independent clock stop controls for CPU / SDRAM, AGP, and PCI
bus
- PCI and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and Self-Refresh operation
- New VIA BGA VT82C596 “Mobile South” south bridge chip available
soon for support of new mobile features
- Dynamic clock gating for internal functional blocks for power
reduction during normal operation
- Low-leakage I/O pads
o Built-in NAND-tree pin scan test capability
o 3.3V, 0.35um, high speed / low power CMOS process
o 35 x 35 mm, 476 pin BGA Package
**VT8501 Apollo MVP4,Single-Chip 66-100MHz & AGP <11/04/98...
**VT82C680 Apollo P6, Pentium-Pro Chip Set <08/30/96...
**Support chips:
**VT82C505 Pentium/486 VL to PCI Bridge <05/30/94...
**VT82C586/A/B PCI Integrated Peripheral Controller <10/13/96...
**VT82C596/A Mobile PCI Integrated Peripheral Controller <11/05/97...
**VT82C686A/B PCI Super-I/O Integrated Peripheral Ctrl. <02/10/98...
**Later P-Pro/II/III/Celeron...
**Later AMD...
**Other...
*VLSI...
*Western Digital...
*Winbond...
*ZyMOS...
*General Sources:...
(c) Copyright mR_Slugs Warehouse - All rights Reserved