[Home] [This version is outdated, a new version is here]
*Title...
*Search:...
*Read Me/FAQ/General Info...
*_IBM...
*ACC Micro...
*ALD...
*ALi...
*AMD . . . . . . . [no datasheets, some info]...
*Chips & Technologies...
*Contaq . . . . . [no datasheets, some info]...
*Efar Microsystems [no datasheets, some info]...
*ETEQ...
*Faraday...
*Forex . . . . . . [List only, no datasheets found]...
*Intel...
**????? (Profusion) c:99
Chips:
Memory Access Controller (MAC)
Data Interface Buffer (DIB)
CPUs: 8x P-III Xeon Oct
DRAM Types: SDRAM PC100 2-way Interleave dual channel
Max Mem: 32GB
ECC/Parity: ECC
AGP speed: N/A
Bus Speed: 100
PCI Clock/Bus: 1/3 PCI-66/64
**800 series...
*Headland/G2...
**HTK320 386DX Chip Set c:Sep91
***Info:...
***Configurations:...
***Features:...
**HTK340 "Shasta" 486 Chip Set c:Jun92...
**Support Chips:
**HT44 Secondary Cache c:Jun92...
**Other:...
*HMC (Hulon Microelectronics)...
*Logicstar...
*Motorola...
*OPTi...
*PC CHIPS/Amptron/Atrend/ECS/Elpina/etc...
*SIS...
*Symphony...
*TI (Texas Instruments)...
*UMC...
*Unresearched:...
*VIA...
**SL9351 80386DX Page Interleave Memory Controller (33MHz) ?
***Info:...
***Versions:...
***Features:...
**SL9352 80386DX System and Memory Controller <06/12/90...
**SLXXXX Other chips...
**
**VT82C470 "Jupiter", Chip Set (w/o cache) 386 [no datasheet] ?
**VT82C475 "Jupiter", Chip Set (w/cache) 386 [no datasheet] ?
**VT82C486/2/3 "GMC chipset" [no datasheet, some info] ?...
**VT82C495/480 "Venus" Chip Set [no datasheet] ?
**VT82C495/491 ? EISA Chip Set [no datasheet, some info] <93...
**VT82C496G Pluto, Green PC 80486 PCI/VL/ISA System <05/30/94...
**VT82C530MV 3.3V Pentium chipset [no datasheet, some info]<05/30/94...
**VT82C570M Apollo Master, Green Pentium/P54C <06/22/95...
**VT82C580VP Apollo VP, Pentium/M1/K5 PCI/ISA System <02/15/96...
**VT82C580VPX Apollo VPX, VPX/97, Pentium with 66/75MHz Bus <01/09/97...
**VT82C590 Apollo VP2, VP2/97, Single-Chip Pentium 66MHz <01/10/97...
**VT82C597/AT Apollo VP3, Single-Chip for Pentium with AGP <10/03/97...
**VT82C598MVP Apollo MVP3,Single-Chip 66/75/83/100MHz & AGP <09/22/97
***Notes:...
***Info:...
***Configurations:...
***Features:
o AGP / PCI / ISA Mobile and Deep Green PC Ready
- Supports 3.3V and sub-3.3V interface to CPU
- Supports separately powered 3.3V (5V tolerant) interface to
system memory, AGP, and PCI bus
- PC-97 compatible using VIA VT82C586B (208-pin PQFP) south bridge
chip with ACPI Power Management for cost-efficient desktop
applications
- Modular power management and clock control for mobile system
applications
- Combine with VIA VT82C596 (Intel PIIX4 pin compatible 324-pin
BGA) "Mobile South" south bridge chip for state-of-the-art
mobile applications
o High Integration
- Single chip implementation for 64-bit Socket-7-CPU, 64-bit
system memory, 32-bit PCI and 32-bit AGP interfaces
- Apollo MVP3 Chipset: VT82C598MVP system controller and
VT82C586B PCI to ISA bridge
- Chipset includes UltraDMA-33 EIDE, USB, and Keyboard / PS2-Mouse
Interfaces plus RTC / CMOS on chip
o High Performance CPU Interface
- Supports all Socket-7 processors including 64-bit Intel Pentium/
Pentium with MMX, AMD 6k86 (K6), Cyrix/IBM 6x86 / 6x86MX, and
IDT/Centaur C6 CPUs
- 66 / 75 / 83 / 100 MHz CPU external bus speed (internal 300MHz
and above)
- Built-in deskew DLL (Delay Lock Loop) circuitry for optimal skew
control within and between clocking regions
- Cyrix/IBM 6x86 linear burst support
- AMD 6k86 write allocation support
- System management interrupt, memory remap and STPCLK mechanism
o Advanced Cache Controller
- Direct map write back or write through secondary cache
- Pipelined burst synchronous SRAM (PBSRAM) cache support
- Flexible cache size: 0K / 256K / 512K / 1M / 2MB
- 32 byte line size to match the primary cache
- Integrated 8-bit tag comparator
- 3-1-1-1-1-1-1-1 back to back read timing for PBSRAM access up to
100 MHz
- Tag timing optimized (less than 4ns setup time) to allow
external tag SRAM implementation for most flexible cache
organization
- Sustained 3 cycle write access for PBSRAM access or CPU to
DRAM & PCI bus post write buffers up to 100 MHz
- Supports CPU single read cycle L2 allocation
- System and video BIOS cacheable and write-protect
- Programmable cacheable region
o Full Featured Accelerated Graphics Port (AGP) Controller
- Synchronous and pseudo-synchronous with the host CPU bus with
optimal skew control
PCI AGP CPU DRAM Mode
33MHz 66MHz 100MHz 100MHz 3x synchronous *1
33MHz 66MHz 83MHz 83MHz 2.5x pseudo-synchronous *1
30MHz 60MHz 75MHz 75MHz 2.5x pseudo-synchronous *1
33MHz 66MHz 66MHz 66MHz 2x synchronous *1
33MHz 66MHz 100MHz 66MHz 3x synchronous *2
33MHz 66MHz 83MHz 66MHz 2.5x pseudo-synchronous *2
30MHz 60MHz 75MHz 66MHz 2.5x pseudo-synchronous *2
33MHz 66MHz 66MHz 66MHz 2x synchronous *2
*1 DRAM uses CPU clock, *2 DRAM uses AGP clock
- AGP v2.0 compliant (1x and 2x transfer modes)
- Supports SideBand Addressing (SBA) mode (non-multiplexed
address/data)
- Supports 133MHz 2X mode for AD and SBA signalling
- Pipelined split-transaction long-burst transfers up to 533 MB/
sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (128 bytes)
- Sixteen level (quadwords) write data FIFO (64 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
- One level TLB structure
- Sixteen entry fully associative page table
- LRU replacement scheme
- Independent GART lookup control for host / AGP / PCI master
accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / NT5 miniport
driver support
o Concurrent PCI Bus Controller
- PCI buses are synchronous / pseudo-synchronous to host CPU bus
- 33 MHz operation on the primary PCI bus
- 66 MHz PCI operation on the AGP bus
- PCI-to-PCI bridge configuration on the 66MHz PCI bus
- Supports up to five PCI masters
- Peer concurrency
- Concurrent multiple PCI master transactions; i.e., allow PCI
masters from both PCI buses active at the same time
- Zero wait state PCI master and slave burst transfer rate
- PCI to system memory data streaming up to 132Mbyte/sec
- PCI master snoop ahead and snoop filtering
- Six levels (double-words) of CPU to PCI posted write buffers
- Byte merging in the write buffers to reduce the number of PCI
cycles and to create further PCI bursting possibilities
- Enhanced PCI command optimization (MRL, MRM, MWI, etc.)
- Forty-eight levels (double-words) of post write buffers from PCI
masters to DRAM
- Sixteen levels (double-words) of prefetch buffers from DRAM for
access by PCI masters
- Supports L1/L2 write-back forward to PCI master read to minimize
PCI read latency
- Supports L1/L2 write-back merged with PCI master post-write to
minimize DRAM utilization
- Delay transaction from PCI master reading DRAM
- Read caching for PCI master reading DRAM
- Transaction timer for fair arbitration between PCI masters
(granularity of two PCI clocks)
- Symmetric arbitration between Host/PCI bus for optimized system
performance
- Complete steerable PCI interrupts
- PCI-2.1 compliant, 32 bit 3.3V PCI interface with 5V tolerant
inputs
o Advanced High-Performance DRAM Controller
- DRAM interface synchronous with host CPU (66/75/83/100 MHz) or
AGP (66MHz) for most flexible configuration
- Concurrent CPU and AGP access
- FP, EDO, and SDRAM
- 66MHz and 100MHz (PC100) SDRAM support
- Different DRAM types may be used in mixed combinations
- Different DRAM timing for each bank
- Dynamic Clock Enable (CKE) control for SDRAM power reduction in
mobile and desktop systems
- Mixed 1M / 2M / 4M / 8M / 16MxN DRAMs
- 6 banks up to 768MB DRAMs
- Flexible row and column addresses
- 64-bit data width only
- 3.3V DRAM interface with 5V-tolerant inputs
- Programmable I/O drive capability for MA, command, and MD signals
- Optional bank-by-bank ECC (single-bit error correction and
multi-bit error detection) or EC (error checking only) for DRAM
integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 8-bank interleave (i.e., 8 pages open simultan-
eously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization
(e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU/cache to DRAM write
buffers
- Four quadwords of CPU/cache to DRAM read prefetch buffers
- Concurrent DRAM writeback
- Read around write capability for non-stalled CPU read
- Burst read and write operation
- 5-2-2-2-2-2-2-2 back-to-back accesses for EDO DRAM
- 6-1-1-1-2-1-1-1 back-to-back accesses for SDRAM
- BIOS shadow at 16KB increment
- Decoupled and burst DRAM refresh with staggered RAS timing
- Programmable refresh rate and refresh on populated banks only
- CAS before RAS or self refresh
o Mobile System Support
- Independent clock stop controls for CPU / SDRAM, AGP, and PCI
bus
- PCI and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and Self-Refresh operation
- New VIA BGA VT82C596 “Mobile South” south bridge chip available
soon for support of new mobile features
- Dynamic clock gating for internal functional blocks for power
reduction during normal operation
- Low-leakage I/O pads
o Built-in NAND-tree pin scan test capability
o 3.3V, 0.35um, high speed / low power CMOS process
o 35 x 35 mm, 476 pin BGA Package
**VT8501 Apollo MVP4,Single-Chip 66-100MHz & AGP <11/04/98...
**VT82C680 Apollo P6, Pentium-Pro Chip Set <08/30/96...
**Support chips:
**VT82C505 Pentium/486 VL to PCI Bridge <05/30/94...
**VT82C586/A/B PCI Integrated Peripheral Controller <10/13/96...
**VT82C596/A Mobile PCI Integrated Peripheral Controller <11/05/97...
**VT82C686A/B PCI Super-I/O Integrated Peripheral Ctrl. <02/10/98...
**Later P-Pro/II/III/Celeron...
**Later AMD...
**Other...
*VLSI...
*Western Digital...
*Winbond...
*ZyMOS...
*General Sources:...
(c) Copyright mR_Slugs Warehouse - All rights Reserved