[Home] [This version is outdated, a new version is here]
*Title...
*Search:...
*Read Me/FAQ/General Info...
*_IBM...
*ACC Micro...
*ALD...
*ALi...
*AMD . . . . . . . [no datasheets, some info]...
*Chips & Technologies...
*Contaq . . . . . [no datasheets, some info]...
*Efar Microsystems [no datasheets, some info]...
*ETEQ...
*Faraday...
*Forex . . . . . . [List only, no datasheets found]...
*Intel...
**800 series
***810 (Whitney) 04/26/99...
***810L (Whitney) 04/26/99...
***810-DC100 (Whitney) 04/26/99...
***810e (Whitney) 09/27/99...
***810e2 (Whitney) 01/03/01...
***815 (Solano) 06/19/00...
***815e (Solano-2) 06/19/00...
***815em (Solano-?) 10/23/00...
***815ep (Solano-3) c:Nov'00...
***815p (Solano-3) c:Mar'01...
***815g (Solano-3) c:Sep'01...
***815eg (Solano-3) c:Sep'01...
***820 (Camino) 11/15/99...
***820e (Camino-2) 06/05/00...
***830M (Almador) 07/30/01...
***830MP (Almador) 07/30/01...
***830MG (Almador) 07/30/01...
***840 (Carmel) 10/25/99...
***845 (Brookdale) 09/10/01...
***845MP (Brookdale-M) 03/04/02...
***845MZ (Brookdale-M) 03/04/02...
***845E (Brookdale-E) 05/20/02...
***845G (Brookdale-G) 05/20/02...
***845GL (Brookdale-GL) 05/20/02...
***845GE (Brookdale-GE) 10/07/02...
***845PE (Brookdale-PE) 10/07/02...
***845GV (Brookdale-GV) 10/07/02...
***848P (Breeds Hill) c:Aug'03...
***850 (Tehama) 11/20/00...
***850E (Tehama-E) 05/06/02...
***852GM (Montara-GM) 01/14/03...
***852GMV (Montara-GM) ???...
***852PM (Montara-GM) 06/11/03...
***852GME (Montara-GM) 06/11/03...
***854 (?) 04/11/05...
***855GM (Montara-GM) 03/12/03...
***855GME (Montara-GM) 03/12/03...
***855PM (Odem) 03/12/03...
***860 (Colusa) 05/21/01...
***865G (Springdale) 05/21/03...
***865PE (Springdale-PE) 05/21/03...
***865P (Springdale-P) 05/21/03...
***865GV (Springdale-GV) c:Sep'03...
***875P (Canterwood) 04/14/03...
*Headland/G2...
*HMC (Hulon Microelectronics)...
*Logicstar...
*Motorola...
*OPTi...
**82C700 FireStar c:97
***Info:...
***Configurations:...
***Features:
PCI Bus
o PCI supports sustained X-1-1-1 bursts, even to DRAM through an
innovative mechanism. PCI operation can be concurrent with
CPU/L2 cache and IDE operations.
o PCI clock generation eliminates the need for external PCI clock
buffers in many designs and allows the PCI bus to be effectively
power-managed.
o 3.3V or 5.0V PCI is supported on the FireStar PCI bus. If FireStar
is configured for 3.3V operation, 5.0V-only PCI plug-in cards and
docking stations can still be supported through a bridge device
such as OPTi's 820824 Cardbus Controller/Docking Solution, whose
prefetch and post-write buffers off-load operations from the
primary PCI bus.
DRAM Controller
o Provides BIOS with the means to automatically detect the DRAM type
in use on each bank, whether fast page mode, EDO, or synchronous
DRAM, allowing BIOS routines to efficiently program DRAM
operation.
ISA Bus
o A full ISA bus is directly provided to support the keyboard
controller, BIOS ROM, and Compact ISA peripheral devices for local
ISA support with no TTL. When reduced ISA operation is selected,
other FireStar pins become available for general purpose use.
Bus Mastering IDE
o FireStar supports two bus mastering IDE channels that function
concurrently with operations on the CPU/L2 cache interface and PCI
interface. Up to four drives are supported.
o An emulated bus mastering IDE feature allows IDE drives that are
not commonly available as bus mastering devices, such as CD-ROM
drives, to act as bus mastering drives. For example, a CD-ROM
drive can transfer video data to DRAM while the CPU is
decompressing the data and sending it to the graphics controller.
Thermal Management
o Fail-safe thermal management incorporates feedback logic that
requires a very inexpensive external sensor circuit.
o Hardware monitors temperature directly and reliably, while the
fail-safe aspect of the circuitry ensures that sensor component
failure will automatically inhibit CPU clocking to prevent
overheating.
o SMM code will be able to read (and display if desired) actual CPU
temperature.
ACPI Implementation
o Microsoft Advanced Configuration and Power Interface (ACPI) is
being implemented in the FireStar silicon. ACPI is a standard
register interface for power management function jointly developed
by Microsoft, Intel, and Toshiba.
Miscellaneous
o The standard version of the chip can run at 3.3V, up to 66MHz on
the CPU bus.
o A new Context Save Mode feature allows chip registers to be saved
and restored more efficiently than ever before, requiring less SMM
code and storage space.
o The OPTi Viper-N+ Power Management Unit is used, maintaining
backward compatibility down to the register level with previously
written support firmware.
o Serial IRQs are supported as an option for interrupts on PCI.
o Known devices in the system can be positively decoded on the PCI
bus, eliminating the delay for subtractive decode and improving
the efficiency of ISA operations.
o ISA bus cycle speed can be individually controlled to certain ISA
device groups.
o Simple logic gate functions can be assigned to unused pins to
eliminate the need for external TTL. Pin programming is far more
flexible than ever possible on any other chip.
**82C701 FireStar Plus c:97...
**82C750 Vendetta [no datasheet] ?...
**82c801 SCWB2 DX Single Chip Solution c:92...
**82C802 SCWB2 PC/AT Single Chip [no datasheet] ?...
**82C802G/GP System/Power Management Controller (cached) c:93...
**82C895 System/Power Management Controller (cached) c:Sep94...
**82C898 System/Power Management Controller (non-cache)c:Nov94...
**
**Support Chips:
**82C601/2 Buffer Devices <Nov94...
**82C822 PCIB (VLB-to-PCI bridge) c:94...
**Other:...
*PC CHIPS/Amptron/Atrend/ECS/Elpina/etc...
*SIS...
*Symphony...
*TI (Texas Instruments)...
*UMC...
*Unresearched:...
*VIA...
**VT82C597/AT Apollo VP3, Single-Chip for Pentium with AGP <10/03/97
***Info:
The Apollo-VP3 is a high performance, cost-effective and energy
efficient chip set for the implementation of AGP / PCI / ISA desktop
and notebook personal computer systems based on 64-bit Socket-7 (Intel
Pentium and Pentium MMX; AMD K5 / 5k86 and K6 / 6k86; and Cyrix / IBM
6x86 / M2) super-scalar processors.
The Apollo-VP3 chip set consists of the VT82C597 system controller
(472 pin BGA) and the VT82C586B PCI to ISA bridge (208 pin PQFP). The
VT82C597 system controller provides superior performance between the
CPU, optional synchronous cache, DRAM, AGP bus, and PCI bus with
pipelined, burst, and concurrent operation. For pipelined burst
synchronous SRAMs, 3-1-1-1-1-1-1-1 timing can be achieved for both
read and write transactions at 66 MHz. Four cache lines (16
quadwords) of CPU/cache to DRAM write buffers with concurrent
write-back capability are included on chip to speed up cache read and
write miss cycles.
The VT82C597 supports six banks of DRAMs up to 1GB. The DRAM
controller supports standard Fast Page Mode (FPM) DRAM, EDO-DRAM,
Synchronous DRAM (SDRAM), and SDRAM-II with Double Data Rate (DDR) in
a flexible mix / match manner. The Synchronous DRAM interface allows
zero wait state bursting between the DRAM and the data buffers at
66Mhz. The six banks of DRAM can be composed of an arbitrary mixture
of 1M / 2M / 4M / 8M / 16MxN DRAMs. The DRAM controller also supports
optional ECC (single-bit error correction and multi-bit detection) or
EC (error checking) capability separately selectable on a bank-by-bank
basis.
The VT82C597 also supports full AGP v1.0 capability for maximum bus
utilization including 2x mode transfers, SBA (SideBand Addressing),
Flush/Fence commands, and pipelined grants. An eight level request
queue plus a four level post-write request queue with thirty-two and
sixteen quadwords of read and write data FIFO's respectively are
included for deep pipelined and split AGP transactions. A
single-level GART TLB with 16 full associative entries and flexible
CPU/AGP/PCI remapping control is also provided for operation under
protected mode operating environments.
The VT82C597 supports two 32-bit 3.3 / 5V system buses (one AGP and
one PCI) with 64-bit to 32-bit data conversion. The 82C597 also
contains a built-in bus-to-bus bridge to allow simultaneous concurrent
operations on each bus. Five levels (doublewords) of post write
buffers are included to allow for concurrent CPU and PCI operation.
Consecutive CPU addresses are converted into burst PCI cycles with
byte merging capability for optimal CPU to PCI throughput. For PCI
master operation, forty-eight levels (doublewords) of post write
buffers and sixteen levels (doublewords) of prefetch buffers are
included for concurrent PCI bus and DRAM/cache accesses. The chipset
also supports enhanced PCI bus commands such as Memory-Read-Line,
Memory-Read-Multiple and Memory-Write-Invalid commands to minimize
snoop overhead. In addition, the chipset supports advanced features
such as snoop ahead, snoop filtering, L1 write-back forward to PCI
master and L1 write-back merged with PCI post write buffers to
minimize PCI master read latency and DRAM utilization. The VT82C586B
PCI to ISA bridge supports four levels (doublewords) of line buffers,
type F DMA transfers and delay transaction to allow efficient PCI bus
utilization and (PC I-2.1 compliant). The VT82C586B also includes an
integrated keyboard controller with PS2 mouse support, integrated
DS12885 style real time clock with extended 256 byte CMOS RAM,
integrated master mode enhanced IDE controller with full scatter and
gather capability and extension to UltraDMA-33 / ATA-33 for 33MB/sec
transfer rate, integrated USB interface with root hub and two function
ports with built-in physical layer transceivers, Distributed DMA
support, and OnNow / ACPI compliant advanced configuration and power
management interface. A complete main board can be implemented with
only six TTLs.
The Apollo VP3 chipset is ideal for high performance, high quality,
high energy efficient and high integration desktop and notebook AGP /
PCI / ISA computer systems.
***Configurations:...
***Features:...
**VT82C598MVP Apollo MVP3,Single-Chip 66/75/83/100MHz & AGP <09/22/97...
**VT8501 Apollo MVP4,Single-Chip 66-100MHz & AGP <11/04/98...
**VT82C680 Apollo P6, Pentium-Pro Chip Set <08/30/96...
**Support chips:
**VT82C505 Pentium/486 VL to PCI Bridge <05/30/94...
**VT82C586/A/B PCI Integrated Peripheral Controller <10/13/96...
**VT82C596/A Mobile PCI Integrated Peripheral Controller <11/05/97...
**VT82C686A/B PCI Super-I/O Integrated Peripheral Ctrl. <02/10/98...
**Later P-Pro/II/III/Celeron...
**Later AMD...
**Other...
*VLSI...
*Western Digital...
*Winbond...
*ZyMOS...
*General Sources:...
(c) Copyright mR_Slugs Warehouse - All rights Reserved